CLEO-c Monte Carlo Farm at Minnesota

Alexander Scott

28th April 2008

1 Introduction

The University of Minnesota group has been one of the main producers, along
with the University of Florida, of large Monte Carlo samples for the CLEO
project. The current Minnesota Monte Carlo facility was developed in 2003
to meet the simulations needs of CLEO-c. It now consists of approximately
45 machines with over 160 virtual processors for running jobs in parallel, with
Condor as the parallel processing distribution agent. The storage space for
Monte Carlo generation and staging is provided by a RAID array with a 5 TB
capacity that is serviced by 3 dedicated servers, each with its own share of the
disks and a specific function. One is the access point for constants used by
the Monte Carlo farm, one handles the libraries and generation scripts, and
one handles the output from the farm. Perl code to run Monte Carlo generating
jobs on the farm nodes was developed by Alex Smith and modified by Alexander
Scott, but the generating code itself, and the constants needed to simulate the
CLEO-c data, is provided by Cornell.

There are four people involved in the operation of the Minnesota Monte Carlo
farm: Graham Allan (who manages the network connections and Condor), the
constants person at Cornell (who generates constants savesets), the software
manager at Cornell (specifies Monte Carlo parameters and provides code re-
leases), and the Monte Carlo farmer at Minnesota. The Monte Carlo farmer
is responsible for being familiar with the hardware and software components of
the farm, generating the Monte Carlo, and maintaining and troubleshooting the
farm components. These duties will be outlined below, in the form of a how-to

manual.

2 Farm Components

The Minnesota Monte Carlo farm components can be subdivided into the cate-
gories of hardware and software. The hardware component, buying, installing,
maintaining, and supervising, is principally the responsibility of the farmer. The
software component is maintained by others (Graham in the case of Condor, and
Cornell in the case of constants and code). However, the farmer is responsible
for the specific implementation of the software and may need to debug and send
reports to the appropriate authority. The hardware and software are briefly
described in this section, with a description of use in Section 3 and a guide for

maintaining and updating in Section 4.

2.1 Hardware

Most of the farm hardware resides in the sub-basement room S43. There are 45
machines rack-mounted there, 2 free-standing machines, and the RAID array
for data storage. There should be a gigabit connection between all the farm

machines. Disks for shipping are traditionally mounted on the farmer’s terminal.

2.1.1 Linux boxes

There are three machines that act as servers (twserv1-3), 40 nodes (twins4-44,

exclusive of twins10), and two new machines that also serve as nodes.

e twservl, twserv2, twserv3 are original farm machines: dual Xeon 2660
MHz processors with 1 GB RAM, running SL4 (bought 20037). twservl
is the constants server and should be the box used for submitting jobs.
It exports /data/ccon. twserv2 exports the Monte Carlo collection and
storage area (/data/mcfarm). twserv3 exports the code and analysis areas
(/data/farmlib and /data/farmlib2/).

e twins4-31: dual Xeon 2.40 GHz processors with 1 GB RAM, 20 GB storage
(from INTERPRO, based in CA - bought early 2004). Twins4 is a spe-
cial node, with SL3 installed in order to compile CLEO-c code. Twins10
has been taken out of the farm to act as the condor server. The other
machines are nodes in the farm and are hyperthreaded to serve 4 jobs
simultaneously. The average performance of these machines for each vir-
tual processor is 1.3-1.5 sec/event for DDbar type Monte Carlo, 1.5-1.7
sec/event for DDMix (mixture of D, D*, and Ds) type Monte Carlo, 0.8-1.3

sec/event for continuum type Monte Carlo, 1.3-1.8 sec/event for radiative
returns type Monte Carlo, 1.2-1.4 sec/event for psi(2S) simulation, and
0.6-0.9 sec/event for tau-tau type Monte Carlo.

e twins32-44: dual Xeon 2.66 GHz processors with 1 GB RAM, 100 GB
storage, running SL4 (from NOW Micro Inc in St. Paul - bought late
2005). The performance specifications are the same as above.

e mnhepl3d and mnhep20: dual quad-core 2.33 GHz processors with 8 GB
RAM, 2-3 TB storage, running SL4 (from Dell - bought mid 2007). These
machines are desktops, not rack-mounted, and are also used for analysis.
We have found that the production ratio of these machines to the twins
machines is lower than expected (based on analysis job speeds). The rate
of generation falls off as the total number of jobs in the farm increases
(the mnhep# machines can be up to 100% idle when running at full job
capacity). We believe that this is due to increased demands on the con-
stants server. The mnhep machines are approximately 3x as fast as the

twins machines, and can run twice as many jobs.

There is a significant hardware problem that crops up in the twins machines,
in that the machine will quickly (1-3 hours) crash with a kernel panic when
running a suez job from Condor. This problem has been found in the past to
track the motherboard, and replacing the motherboard has stopped the crashes.

This is discussed in more detail in a later section.

2.1.2 TUSB drives

We maintain a number of USB external hard drives to ship Monte Carlo to
Cornell. The cost of transferring files to Cornell over the Internet is prohibitive,
so we copy the simulations to a USB drive and ship via FedEx. Three-day
shipping costs approximately $15, so a full 250 GB disk shipped with three-
day delivery costs $0.12/GB (including return shipping) with a bandwidth of
1 MB/s. These disks are currently mounted on mnhepl and will probably be

mounted in the future on the new farmer’s workstation.

2.1.3 RAID array

The Minnesota RAID array is a JetStor SATA 316F, which hosts 16 disks with a
capacity of 5 TB. The storage space is split between the three servers, with 1056

GB allocated to /data/mcfarm, 500 GB allocated to /data/ccon, and 2 TB to
each of /data/farmlib and /data/farmlib2. Graham Allan is responsible for
maintaining the RAID array. Technical details on this model should be available

at http://www.jetstor.com.

2.2 Software

Most of the software used by the Minnesota Monte Carlo farm is built and main-
tained by others. Graham Allan manages the Condor releases now, as well as
the installation of Scientific Linux operating systems and updates. Pete Zweber
coordinates from Cornell the code releases to be compiled at Minnesota, while
Debabrata Mohapatra creates the constants savesets that Minnesota needs. The
farmer in most cases only needs to be competent to recognize errors and provide
detailed feedback on those errors to the experts, although code installation in

some cases is up to the farmer.

2.2.1 Condor

Condor is the parallel processing agent used by the Monte Carlo farm. According

to the Condor website,

Condor is a specialized workload management system for compute-
intensive jobs. Like other full-featured batch systems, Condor pro-
vides a job queueing mechanism, scheduling policy, priority scheme,
resource monitoring, and resource management. Users submit their
serial or parallel jobs to Condor, Condor places them into a queue,
chooses when and where to run the jobs based upon a policy, care-
fully monitors their progress, and ultimately informs the user upon
completion.

-http://www.cs.wisc.edu/condor /description.html

Condor is currently maintained at Minnesota by Graham Allan. The Minnesota
Monte Carlo farmer should also have a folder containing documentation on
Condor and Condor commands. More information on using Condor is available

in later sections.

2.2.2 Constants/servers

The constants for CLEO-c Monte Carlo generation are held in an Objectivity
database with a license from Cornell (it has only had to be renewed at Minnesota

once in the past five years). The constants databases, archives, and servers are
located in the /data/ccon partition of the RAID array, with twservl as the
constants server. There are databases for every class of constants, with two fed-
erated databases: Constants and RunStatistics. There are three servers to fetch
from Cornell to serve constants: AllConstantsServer, RunStatisticsDBServer,
and VersionManagerServer. These are maintained separately from releases and

savesets, but very rarely need updating.

2.2.3 Releases

The Monte Carlo and analysis code is built into stable releases at Cornell and
then installed at Minnesota. The software release for physics generation of a
Monte Carlo job should be the most recent version, but the release for recon-
struction should correspond to the release used to process the corresponding
data set. The releases currently installed at Minnesota can be found in the di-
rectory /nfs/cleo3/cleo3/0ffline/rel; many older releases previously built
at Minesota have been deleted because they were built using the generator from
SL4. As a rule of thumb, files at Minnesota have the same directory location
as at Cornell, except for the second “cleod” in the address. There is a release

installer developed by Valentin to automatically handle the release installations.

2.2.4 Generating scripts

The Monte Carlo perl scripts were developed by Alex Smith to automate the
process of generating Monte Carlo. The current version of the farm scripts are
located in the directory /home/hep/cleo3/farm_scripts_20040819. The main
function is mc_start, which initializes the generating process and calls the other
functions. The scripts mc_processor_cleog.pl and mc_processor_mcpass2.pl
create the .tcl scripts and execute the suez jobs that actually generate the
Monte Carlo. The script mc_congealer.pl compiles generated files into volumes
in the directory “/data/mcfarm/output/<FARMNAME>/” (where <FARM-
NAME> is the farm name parameter, such as Test DDBarD42 01), keeps
track of what stage of generation the files are in (“queued,” “cleog,” or “mc-
pass2”), and resubmits failed jobs. The script mc_archiver.pl moves volumes
from the network to either a USB drive or to a remote location. The function

mc_webpage. pl starts a webpage that displays information about the jobs.

2.2.5 Webpage

The CLEO Monte Carlo farm webpage is located at

http://webusers.physics.umn.edu/"cleo3/. It links to the most current
farm page, which may vary if more than one farm is active, through which one
can view the log area of each run and the associated output logs. The main
webpage also has a link to a list of old farm webpages (although the log areas
are probably deleted and so the run links will be broken), a link to a page that
keeps statistics on the processors in the farm, and a page that specifies how to

set up a request file.

3 Farm Management

Managing the Monte Carlo farm consists of generating Monte Carlo, shipping it,
and fixing any hardware problems. There are also issues of maintenance which

will be described in the following section.

3.1 Generating Monte Carlo

The Monte Carlo generation process is largely automated, but there are a few
things that must still be done by hand (or are easier to do so). There are
pre-generation manual steps to take and post-generation checks to be done by
hand.

3.1.1 Pre-generating

The first step in generating Monte Carlo is to make a request file. This can
be done in an automated fashion (by using the request form off the main
farm page) or by hand. The automated form is currently not functional; it
doesn’t record the input values into a .request file. It can also be tedious, as
many values have to be looked up, but it may be worth fixing. The direc-
tory /home/hep/cleo3/farm_scripts_20040819/requests holds the old re-
quest files for generating Monte Carlo, which can be copied to make a new
request file that has the same physics. The parameters determining the farm
name, the cleog and mcpass2 .tcl files, and the location of the user-defined
decay.dec may need to be updated, but minor edits to an old request file are

usually all that is necessary.

The cleog and mcpass2 code releases need to be set in the cleo3rc file in
order to run properly. The file is “cleo3/.cleo3rc_bash; edit the values of the
CLEOG_REL and PASS2_REL parameters and then source the file. It is a good idea
to reboot all of the machines before generating a new sample; although it isn’t
required to run, the nodes develop errors over time and may freeze up or have
kernel panics, so pre-generation is as good a time as any to reboot. The script
for rebooting all the nodes is /utilities/mc_reboot.pm in the farm scripts
area, but it requires super-user permissions on all machines (which cleo3 doesn’t
have, so I use my own account) and your password has to be entered for every
machine to be rebooted, which can be tedious. After rebooting, the constants
will obviously need restarting (use the command mc_start_constants). The
USB drive that will hold the Monte Carlo archives should be mounted at this
time, if it is not already. The machine on which the drive is mounted is a
parameter in the request file and normally corresponds to the terminal that the
Monte Carlo farmer uses. You can mount the disk with the command “mount

/media/usbdisk” (probably done under your personal account).

3.1.2 Generation

The rest of the farm process is automated. Executing the command “mc_start
<FARMNAME>" will begin the process. One common mistake is to write the
farm name parameter as <FARMNAME.request> which will cause the farm
to fail (it will append the “.request” and find no request file that matches).
The mc_start function will create condor job files and submit them to the
condor queue. Condor will pick up the jobs and assign them to nodes as
CPU becomes available. The processor.bash script calls the scripts to han-
dle cleog generation and mcpass2 reconstruction and output is created in the
/export/local/condor area and then moved to /data/mcfarm/output. The
congealer volumes the output files and the archiver moves them to the USB disk
(or sends over the network to a remote location).

A typical Monte Carlo farm will take 24-72 hours to complete. During this
time, the Monte Carlo farmer should monitor production to minimize dead time

if an error occurs.

e The Monte Carlo webpage displays the status of the congealer and archiver,
the status of each job (queued, in cleog, or mcpass2, or symbol “10” if the
output is being moved), the machine it is running on, and the average
generating time/event (if the job has finished). Clicking on the run num-

ber follows a link to the log area, showing the files used by the job and
allows the logfiles to be read. The processorx*.out file, cleogx.log file,
and the pass2x*.log file are the most informative when checking for er-
rors. Sometimes the error is systemic, such as if all the jobs fail at the
CORBA step (which indicates that the constants servers are not running

or up-to-date).

The command “condor " allows the farmer to see the list of jobs in the
queue, while “condor _status” shows the status of the machines in the
condor pool. The command “condor _status <HOSTNAME>" shows the
status of the virtual processors of just one machine, like twins5, while the
command “condor status <HOSTNAME > -v” shows parameter values on
those virtual processors. If jobs are not being picked up, it can be useful
to check machine stats with this command to see if a node is not meeting
job preconditions. This can be because the CPU is busy or there is not
enough disk space available for the job (sometimes space has to be cleared
manually). The status webpage linked to from the main farm webpage
tracks some of this information, but it updates too slowly to be of much
use (and it hangs if one of the machines hangs, which could be fixed in
the future).

The farmer can set, as one of the environment variables, how many times
a job will be retried if it fails. Some runs are bad, and they will not ever
successfully generate. Some generators have buggy code (like the Lund
Area Law for continuum), so that there are random failures but trying
again with different random numbers may be successful. Trying three
times before marking a job as failed seems to be the most efficient number
for producing despite random failures while not wasting too much time on
dysfunctional runs. If a job hangs so that no failure message is returned,
the farmer needs to run “mc__abort _job <FARMNAME> <RUNNUM>"
to create an abort.status file in that log area. The congealer will then mark
that job as aborted and will not resubmit it. This can be necessary to
handle runs that were picked up by a machine that later entered a hung
state since no job failure message can be returned.

If a machine that is not a known problem machine hangs while running,
you should go downstairs and reboot it. It takes up to twenty minutes
for Condor to reassign jobs to a rebooted machine. If a known trouble

machine hangs (like twins35 or twings42), it is usually more productive to
leave it out of the condor pool because it will likely fail again in 1-3 hours,

requirig more maintenance.

e Sometimes a lot of jobs fail at once and then it is worth resubmitting failed
jobs (a total of 2-3 failed jobs are usually not worth resubmitting). This
can be due to a power glitch taking down all machines, or an nfs error
preventing access to the code (this is relatively common), or sometimes
one machine will develop an error and serially pick up jobs and fail them (if
the error occurs quickly enough, one machine can empty the entire queue
before another machine becomes free). In this case, use “mc_resubmit -all
<FARMNAME>" to resubmit just the failed jobs (“mc_start <FARM-
NAME>” will redo the successful ones too). If there is insufficient space
in /data/mcfarm for additional files, the congealer will halt the farm. If
the farmer clear space quickly, the condor command “condor _release” will
release the hold on cleo3 jobs in the queue. If too much time goes by, the
jobs cannot be restarted by releasing the hold, and the farm will have to
be killed using mc_kill and the jobs resubmitted using “mc_resubmit -all
<FARMNAME>.”

3.1.3 Post-generation

There are some final checks to do before sending archives. Verify that each
Monte Carlo farm job has all its volumes by comparing the numbers on the USB
disk and the farm job’s output area, which is /data/mcfarm/output/<FARMNAME>.
Sometimes the archiver doesn’t find the last volume, and the webpage reporting
is incorrect as well. If a volume is missing, restarting the archiver will fetch the
remaining volumes.

After a farm has been entered into Eventstore at Cornell, then it can be
deleted here. Use “mc_clean <FARMNAME>" to completely remove the old
farm. This may also be necessary if you decide to wipe out a farm that is

running and start over.

3.2 Shipping Monte Carlo

We currently use a USB disk to ship Monte Carlo from Minnesota to Cornell;
this disk is traditionally mounted on the farmer’s terminal and is either 250 or
1000 GB. The archiver copies volumed Monte Carlo in 5000 MB chunks to the

USB disk. If more than one Monte Carlo farm is copied to the disk, make a list
of the contents. Be sure to unmount the external drive correctly before flipping
the power; a failure to do so can make the contents unreadable. If the USB
disk won’t unmount, ususally it is because someone is logged into the mounted
directory.

We have a number of cardboard boxes for shipping either 1 or 2 disks at a
time. Pack the USB enclosure securely (no need to include the power or USB
cable) in the shipping box and take it to room 80. Weigh the package and have
Ron Huhn FedEx it to:

Curtis jastremsky
Wilson lab

Dryden Road

Ithaca, NY 14853-8001

using the expense account number 533-XXXX. The first $100 of insurance is
free, so only the 1000 GB drives need additional insurance. Ron Huhn will
handle the rest. Post a message on the hypernews forum when a disk is shipped
and list its contents.

3.3 Fixing hardware

The Monte Carlo farm manager should get key card access from Graham to room
543 for off-hours computer maintenance. There are a few common problems that
can be fixed by the farm manager:

e Power failures: sometimes the power flickers and all the farm machines
need rebooting. Currently, Graham Allan maintains mnhep13 and mn-
hep20, but the twins machines should be rebooted by the farm manager

e Unresponsive machine: sometimes a job will hang a machine and a reboot
is necessary. There is a terminal in S43, connected to the farm KVM
switch, that can be used to read the last output from the stuck machine.
I suggest keeping a spreadsheet of machines, date of crashes, and reason
for crash (frozen, kernel panic, write error, etc.). Reboot the machine and
make sure that it comes back; sometimes additional maintenance or the
“root” password is needed.

10

e Hardware problems: the Maxtor 80 GB drives are a known problem, and
it may be that not all of them have cycled out of usage in the farm.
Memory chips may also need changing. This can be verified either by
running a diagnostic program on the machine or asking Alex Schumann
to check his online diagnostic. More commonly, a machine will not be
stable in the farm for more than a few hours. This has been traced to the
motherboard, which we confirmed by swapping that motherboard with
another machine’s and keeping all other components the same. When
you experience this problem, follow the same procedure. Graham Allan
will need to change some settings for the swapped machines to access the
network correctly. If the problem tracks the motherboard, toss the board
and buy a new one. We last bought boards from NOW Micro Inc. There
are currently 3 machines which exhibit this problem: twinsl7, twins35,
and twins42. Only twins35 has been crashing often enough to warrant a
motherboard replacement. As a final test, the motherboards of these three
machines have been swapped with a machine one number higher (e.g., the
board in twins17 has been put in twinsl8 and vv.) If the problem tracks,

then a new board should be purchased.

4 Farm Updates

It is possible that, by the time that a new farmer takes over the Minnesota
Monte Carlo farm, there will be no need for futher code updates for CLEO-c.
In case there is a need for future updates, the procedure for installing new code
and constants is outlined below.

4.1 Updating Constants

After a dataset is finished, CLEO experts begin fixing the constants for that
dataset. After all values are in, the Cornell constants manager should create
a saveset that is a snapshot of the Cornell constants set. The farm script
mc_maintainer.pm contains a routine called mc_update_constants to fetch
and install the new constants saveset at Minnesota. The constants should be
updated from twservl (because it has a direct connection to the constants disk
space and the user “cleo3” can has a public key to Cornell from twservl) using
the command “mc__update constants”. The objectivity lock server (ools) must
be running to successfully update constants (if it is not, execute "ools &").

11

There are a number of parameters that the routine mc_update_constants
requests (defaults are set by .mcfarmrc):

e The Cornell location where the archive is stored
[/mnt/ccond/backup/dated/|

The name of the Cornell computer on which the archive is stored

[1nxcon .1ns.cornell. edu]

The local destination of the incoming archive

[/data/ccon/ccon3d/archives]

The Cornell base directory for the database

[/mnt/ccon/ccon3]

The local directory in which to build the database

[/data/ccon/ccon3/constants|

The default values are correct unless you hear otherwise from Cornell, so pressing
<enter> to accept the defaults is correct. The routine then connects to Cornell
and checks the archive area for savesets, which are labeled by year and month.
The user should select a saveset from the list, which will almost always be the
most recent one (for example, “2008-017). There will then be a list of gzipped files
containing the constants information (e.g., “/mnt/ccon3/backup/dated//2008-
01/Constants-23_0_9..gz”). The user should select the first two sets of numbers
in the filename (in the example above, the suffix is “23_0”), which will signify
the version number but not the individual file number. The routine will then

display a list of steps for installing the constants.

1. Fetch database archives - the routine will download the gzipped files from
Cornell to the directory /data/ccon/ccon3/archives and unzip them.
This download will take a few hours and will use about 40 GB of space. If
the constants expert at Cornell doesn’t change the suffix for each saveset,
the user at Minnesota will have to manually agree to overwrite each old

file with the new one when the gzunzip command runs.

2. Unpack the database archives - the routine will expand the saveset into the
Constants and RunStatistics databases. It will have to delete the existing
databases to make the new ones. The unpacked databases take up about
50 GB of space.

12

3. Install the database archives - the routine builds the federated databases
Constants and RunStatistics. The parameters here are sensitive to what
was used at Cornell to build the federated databases, so it is possible that
the command will have to be adjusted on the fly. If there is a problem,
manually execute the command listed by the routine and you will get an
output statement of which parameters are incorrect and what they should
be.

4. Update constants server executables - this is rarely necessary, and should
be indicated by the Monte Carlo coordinator. It is usually done when a
new constants class is added. The three servers, AllConstantsServer, Run-
StatisticsDBServer, and VersionManagerServer, take up 77 MB of space
and require only about a minute to download.

It is probably a good idea to reboot twservl after finishing the routine
mc_update_constants so that no old versions of constants are retained. Ex-
ecuting the routine mc_start_constants will kill currently running constants
servers and start new ones, as well as killing and restarting the objectivity lock
server and mico nsd. The log files are kept in /data/ccon/ccon3/EXE, but it
is usually sufficient to verify that the servers were restarted (the logs can be
checked in case of errors).

4.2 Updating Releases

Release updates are handled in two ways; either they are a new code release
or a patch of a release already installed. New releases are handled using the
release installer CleoReleaseManager .py from Valentin. The main difference in
release installation between Minnesota and Cornell is the root directory , which
is /nfs/cleo3 at MN and /nfs for Cornell. The procedure for installing a new
release (which takes approximately one working day) is as follows:

e Login to an SL3 machine (i.e., twins4). There are significant differences
in observables in Monte Carlo generated on SL3 and SL4 platforms, so it

is important to only compile on an SL3 machine.
e export “CXX=g++", “C3CXX=g++", and “C3CXXTYPE=g++”
e Change directories to /nfs/cleo3/cleo3_rpm/.

e Execute “cvs update scripts/” to update the installer and associated scripts

13

e Change directories to
/nfs/cleo3/cleo3_rpm/scripts/CleoReleaseManager/

e Execute “CleoReleaseManager.py -cpp-version 3.2.3 -install -release <REL-
NAME> -¢3Dir /nfs/cleo3 -scp 2>&1 1>& install <RELNAME>.log <
/dev/null &” where <RELNAME> is the release name, and the output

is redirected to the log file for later diagnosis if there is a problem.
To patch an existing release (which usually takes a few minutes),

e Login to an SL3 machine
e Change directories to /nfs/cleo3/cleo3_rpm/scripts/
e Execute “cvs update manage releases” to update the patching script

e Execute “./manage releases patch <RELNAME> -u <PKGNAME 1>
<VNUMBER_ 1> -u <PKGNAME 2> <VNUMBER_2> ... 2>&11>&
patch_ <RELNAME>.log < /dev/null &”, where <RELNAME> is the
release name, <PKGNAME +#> is a package needing an update and
<VNUMBER._ #> is the version number to update to (e.g., SuezScripts
v16_02_ 00), and the output goes into the log file for later diagnosis if

there is a problem.

e manage_releases builds the patch with a dead link for cern. Correct this
by entering the directory /nfs/cleo3/cleo3/0ffline/rel/<RELNAME>/,
deleting the current soft link cern, and making a new link by the same

name to ../../../cern/rel/current.

14

