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Abstract

AMonte Carlo feasibility study was performed regarding the possiblity of improving the �t values

of the 26 parameters of the CT10 Parton Distribution Function using data from the Compact Muon

Solenoid at the Large Hadron Collider. Two techniques, one involving direct comparison of χ2

values (∆χ2) and the other involving �ts of weigthed averages against data, were performed using

three di�erent measurements, including a novel variable φ∗, which was designed to take advantage

of particle detectors good track angle resolution to circumvent their relatively poor momentum

and energy resolutions. The ∆χ2 technique failed to achieve statistically signi�cant results for

any measurement other than rapidity and the weighted average �t technique su�ered from strong

correlations in the e�ects of variations on all of the measurements considered.

1 The Compact Muon Solenoid Detector

The Large Hadron Collider (LHC) is a particle accelerator located in the Geneva region. Its primary

purpose is to produce head-on 7 TeV proton-proton collisions and 2.75 TeV per nucleon ion collisions at

optimal luminosities of 1034cm−2s−1 and 1027cm−2cm−1, respectively. This will be used to study the

phenomenon of elctroweak symmetry breaking

The Compact Muon Solenoid (CMS) detector at the LHC is one of the two primary particle detectors

at the LHC (the other being ATLAS) located at one of the two primary collision points. It consists of

a 6 m diameter 12.5 m long superconducting solenoid designed to generate a 4 T magnetic �eld in the

interior detector regions in order to enable the measurement of particle mass and charge sign. Inside

the magnet the CMS detector is divided into regions. These regions are comprised of di�ering varieties

of particle detectors, suited for the expected byproducts of the proton collisions at di�erent positions

relative to the interaction point.

The Electromagnetic Calorimeter (ECAL) is a region of the detector which consists of a series of Lead

Tungstate (PbWO4) crystal scintillators which produce light whenever charged particles pass through

them. This light is detected by one of two varieties of photodetectors: avalanche photodiodes in the

barrel and vacuum phototriodes in the endcaps.
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In high energy particle physics, it is common to use a modi�ed form of spherical coordinates where

the polar angle is replaced with pseudorapidity, de�ned by η = − ln
[
tan

(
θ
2

)]
, where θ is the polar angle.

The section of the ECAL in the pseudorapidity range |η| < 1.479 is known as the barrel (EB). It

consists of a 360 by 170 grid (in φ and η respectively) of 230 mm (25.8 radiation lengths) long crystals.

At either end of the ECAL, 315.4 cm from the interaction point, in the 1.479 < |η| < 3.0 range, there are

regions known as the endcaps (EE). Each consists of two halves (called Dees) consisting of 138 groups of

5x5 crystal units (supercrystals) as well as 18 special partial supercrystals at the inner and outer edges

all arranged in a rectangular x-y grid. In total there are 3662 crystals in each Dee, each 220 mm (24.7

radiation lengths) long.

The Hadron Calorimeter (HCAL) is a large region of the detector intended to detect primarily

hadron jets. Of primary interest to this studiy is the forward calorimeter (HF), which is 11.2 m from

the interaction point and covers a pseudorapidity range of 3 < |η| < 5.2. It consists of a series of quartz

�bres (chosen for radiation hardness) which collect Cherenkov light from shower particles. [8]

2 The CT10 Parton Distribution Function

The predominant theory explaining the behavior of high energy proton collisions is the quark model

or parton model, which posits that the proton (as well as the neutron) is composed of smaller particles

known as quarks and gluons, which are held together by the strong nuclear force. The quarks and gluons

in a proton come in two varieties, valence quarks, of which there are three, and virtual sea particles,

which are spontaneously created and absorbed continually.

Due to the intractability of calculating proton-proton collision cross sections directly from Quantum

Chromodynamics (QCD), a variety of phenomenological models have been developed. Among these are

what are called parton distribution functions (PDFs). A parton distribution function is a probability

density of the various partons, quarks, antiquarks, and gluons, as a function of longitudinal momentum

fraction.

The PDF employed in this study, known as CT10, was developed in 2010 for analysis of LHC

and Tevatron data, as a updated version of the older CTEQ6.6 (seen in �gure 1). It contains 26 free
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Figure 1: The CTEQ6.6 Parton Distribution Function

parameters whose values were �tted using all available data. As in any multidimensional χ2 �t, the �t

error is fully characterized by an N × N matrix, rather than a single error along each parameter, or,

equivalently, as errors along the eigenvectors of this matrix in parameter space. [4]

3 Measurements of Z → ``

Deep inelastic collisions between protons often produce Z bosons, which then often decay into lepton-

antilepton pairs. The distribution of these Z bosons serves as a measurement of the internal properties

of the proton and therefore a means of constraining PDF parameters. When two unambiguous lepton
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tracks are identi�ed they are conisdered a potential Z event.

In this study there are three categories of dilepton events of interest, classi�ed by the detectors in

whichy the �nal state leptons ended up, speci�cally events where both leptons are detected by the barrel

(EB-EB), events where one is detected by the barrel and one by the endcap (EE-EB), and events where

one is detected by the endcap and one the forward calorimeter (EE-HF). These categories are considered

because the accuracy of energy measurements is better for leptons that end up in di�erent parts of the

detector, because of pileup e�ects, and the signal-to-noise ratio of HF-HF events is too poor.

3.1 Invariant Mass

The rest or invariant mass of the Z boson is equal to its energy in its frame of reference, or
√
E2 − p2

(with c = 1) in any frame of reference. By conservation of energy this must be equal to the total energy

of the two leptons in their center of mass frame, which is a measurable quantity, still equal to
√
E2 − p2,

where E and p are total energy and momentum respectively. Although the Z boson has a well-de�ned

mass, the measured center of momentum frame energy of dileptons form broad peak with a large

background for three reasons. The Z bosons produced by proton-proton collisions are virtual and can

therefore be o�-shell widening the peak, and dilepton �nal states can also be the result of a virtual

photon. Also resolutions e�ects smear the distribution.

3.2 Rapidity

Rapidity is an alternative representation of velocity commonly used in special relativity. De�ned

as cosh−1 1√
1−v2/c2

. Its primary advantages are that the Lortentz transform has a simple form when

expressed in terms of rapidity, the addition of velocities is linear in rapidity, and the rapidity of light

is in�nite, so rapidities can be arbitrarily large. Furthermore, it justi�es the use of pseudorapidity

as the distribution of rapidities of particles produced by collisions is essentially �at as a function of

pseudorapidity.

Because it has a very direct relationship to momentum fractions of partons, the distribution of �nal

state particle rapidities along the beam axis is a useful measurement for constraining PDFs. In a proton
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Figure 2: s-Channel Feynman Diagram

proton collision producing a Z boson from two partons (labeled 1 and 2), the energy and momentum

of the Z boson are given by EZ = x1
√
s
2 + x2

√
s
2 and pz = x1

√
s
2 − x2

√
s
2 , where x1 and x2 are the

momentum fractions of partons 1 and 2 respectively and
√
s is the center of mass energy of the collision.

This means that the values of x1 and x2 are constrained by the relation m2
Z = sx1x2, where mZ is the

mass of the Z boson, since E2
Z = p2Z + m2

Z . The rapidity of a particle can be expressed in terms of its

energy and momentum by the formula YZ = 1
2 ln EZ+pZ

EZ−pZ , which reduces to YZ = 1
2 ln x1

x2
. Substituting

in the constraint and reducing gives YZ = ln
√
x1√

m2
Z/sx1

= ln x1
√
s

mZ
. So x1 = mZ√

s
eYZ , giving a direct

relationship between momentum fraction and rapidity.

3.3 Transverse Momentum and Related Variables

The transverse momentum of a Z boson is de�ned as the component of its momentum perpendicular

to the beam axis. This measurement is of primary interest since it distinguishes events that are results

of s-channel interactions (�gure 2), which result in very little transverse mometnum, and events that are

the results of t-channel interactions (�gure 3), which result in a broader range of transverse momentum.

The transverse momenta of the product leptons are de�ned analogously. These quantities are used

to de�ne two observables in terms of what is the called the thrust axis: t̂ =
~p
(1)
t −~p

(2)
t∣∣∣~p(1)t −~p
(2)
t

∣∣∣ , where ~p(1)t and

~p
(2)
t are the transverse momenta of the leptons. aT and aL are the components of the total Z transverse
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Figure 3: t-Channel Feynman Diagram

momentum, ~pZT = ~p
(1)
t − ~p

(2)
t perpendicular and parallel to the thrust axis, respectively. aT is chosen as

an observable because is has been found to be less susceptible to resolution and e�cency e�ects than

pZT in the pZT < 30 GeV region [2]. In order to reduce the uncertainty in aT measurements further it is

often considered as a momentum fraction, aT /Q, where Q is invariant dilepton mass.

3.4 Phi-Star

Due to the fact that particle detectors often have better angular resolution than momentum or

energy resolution, it is advantageous to de�ne kinematic variables which are closely correlated to desired

measurements, but are entirely functions of particle track angles. A kinematic variable known as φ∗ was

recently proposed [2].

When the transverse momenta of the two leptons are approximately the same, it can be shown that

aT /Q ≈ tan(φacop/2) sin(θ∗), where φacop = π−∆φ, where ∆φ is the azimuthal opening angle between

the two leptons, and θ∗ is the scattering angle. φ∗ is de�ned accordingly as tan(φacop/2) sin(θ∗) [2]. The

statistical properties of this variable have been studied extensively, and it was found to be as sensitive

to pZT but more precisely determined given the current limitations of particle detectors [1, 2, 5].
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4 Analysis

A large Monte Carlo data set was generated using the CT10 PDF in POWHEG [6, 7, 10] for boson

and dilepton generation and then Pythia was used for hadronization of quarks into jets. From the

full Monte Carlo data set, four independent pseudodata sets were constructed. The event populations

of these pseudodata sets were chosen to be similar to the amount of data expected to be produced by

CMS, speci�cally 4 fb−1 of data at 80% e�ciency per lepton. This amounted to approximately 1 million

events.

In order to study the ability of of these measurements to constrain the parameters of the CT10 PDF

it was necessary to construct a set of datasets characterizing the e�ect of varying the parameters of the

PDF along each eigenvector by ±1 standard deviation. Although the variations are along eigenvalues

of the �t, it should be noted that their e�ects on the distributions of the measurements in this study

are not orthogonal.

The general analysis method used in this paper was χ2 �tting of Monte Carlo generated mass,

rapidity, and phi-star distributions with single eigenvalues of the PDF varied. �Truth� distributions,

which contain the full Monte Carlo population, were varied using a weighted average parameter and �t

to the psuedodata distributions. A measurement of sensitivity, χ2
i0 =

∑ (din−m0n)
2

σ2
in

, where din is the

population of the nth bin of the ith variation pseudodata set (0 being no varied eigenvector) normalized

by the population of the entire histogram, σin is the estimated error on din, and m0n is the nth bin of

the unvaried �truth� data set normalized by the population of its entire histogram, was calculated for all

of the eigenvector variations for each of the measurements or pair of measurements considered and a set

of six sensitive eigenvectors were selected (1, 4, 7, 10, 12, and 24 using the standard indexing scheme).

Each of the three measurements described in section 3 were considered, as well as the combination

of rapidity and φ∗, represented by a two dimensional histogram. Neither of the other two measurements

were combined with mass in the �nal analysis, as the sensitivity of the mass distribution to variations in

the eigenvectors was found to be insigni�cant. The mass measurement was rebinned down to a set of six

bins chosen to create consistent bin populations outside of the Z peak and the rapiditiy measurements

were folded to |Y | measurements, where Y is rapiditiy, in order to increase statistics, as no signi�cant
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directional asymmetry was expected. For all three measurements, the data from the three detector

region pairs were combined, that is in the below formulas the bin populations are the sums of the three

populations corresponding to the three detector region pairs. In the φ∗ measurement, the uncombined

values were also considered, that is the χ2 values were taken as the sum of the χ2 values corresponding

to the three detector regions.

4.1 ∆χ2 Method

This method consists of calculating X̃i =
χ2
i0−χ

2
ii

σχ2
00

for each of the variations, where χ2
ij =

∑ (din−mjn)
2

σ2
in

(with the values in that formula being the averages across the four pseudodata sets) and σχ2
00 is the

standard deviation of χ2
00 across the four pseudodata sets. σχ

2
00 represents a purely statistical signi�cance

level that would be proportional to
√
N , where N is the number of bins, if every bin were populated

enough to be approximately normally distributed. This value represents a measurement of the statistical

detectability of the e�ect of a 1σ variation along one of the PDF eigenvectors. If the e�ect is pronounced

enough, ∆χ2
i = χ2

i0 − χ2
ii should be larger than σχ2

00, otherwise the change is indistinguishable from

statistical variation.

4.2 Best Fit of Weighted Average Method

Weighted averages were used to approximate the e�ect of varying the PDF parameter set along each

eigenvector. Each bin of the model histogram was calculated using the formula mi(t) = 1
2 ((1 + t)m+

i +

(1− t)m−i ), where t is a parameter representing a variation of up to one sigma in either direction, and

m±i are the normalized bin populations of the �truth� variation.

Due to the linearity of the weighted average model, the �t values and errors are analytically solvable

and the derivation is below:

χ2 =
∑ (di −mi)

2

σ2
i

χ2 =
∑ ((1 + t)m+

i + (1− t)m−i − 2di)
2

4σ2
i
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χ2 =
∑ ((m+

i −m
−
i )t+m+

i +m−i − 2di)
2

4σ2
i

χ2 =
∑ (m+

i −m
−
i )2t2 − 2(m+

i −m
−
i )(m+

i +m−i − 2di)t+ (m+
i +m−i − 2di)

2

4σ2
i

χ2 = t2
∑ (m+

i −m
−
i )2

4σ2
i

− t
∑ 2(m+

i −m
−
i )(m+

i +m−i − 2di)

4σ2
i

+
∑ (m+

i +m−i − 2di)
2

4σ2
i

A parabola in the form at2 + bt+ c can be written c− b2

4a + a
(
t+ b

2a

)2
, and is therefore minimized

(or maximized) by t = − b
2a . This gives the formulas for tmin, σt, and χ

2
min:

tmin = σ2
t

∑ (m+
i −m

−
i )(m+

i +m−i − 2di)

4σ2
i

σt =

[∑ (m+
i −m

−
i )2

4σ2
i

]−1/2

χ2
min =

∑ (m+
i +m−i − 2di)

2

4σ2
i

− σ2
t

[∑ (m+
i −m

−
i )(m+

i +m−i − 2di)

4σ2
i

]2
By �tting pseudodata variations against weighted average models for each pair of sensitive eigenvec-

tors it can be determined how well this method delineates the e�ects of variations in each eigenvector.

Ideally the �t parameter t should only signi�cantly deviate from 0 when the eigenvector is being �tted

against itself. The �nal �t values were taken as the average across the four pseudodata sets and the �t

errors were taken to be the standard deviation of them. These values were checked for consistency with

the error estimated by the formula above.

In order to evaluate the degree to which variations in eigenvectors were correlated, a quantity repre-

senting correlation was calculated:
∑
d

tditdj
σdiσdj

, where tdk is the best �t of the pseudodata represented by

the index d (which includes eigenvector index, plus or minus variation, and pseudodata set for a total

of 26× 2× 4 = 208 terms in the sum) against the model which is varied along the eigenvector k. Then
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for each measurement, the histogram of this value for all pairs i 6= j (without duplicates, making 325

pairs) was �tted by a multiple gaussian. Any well-de�ned peaks away from zero were an indication of

a set of correlated eigenvectors.

5 Results

The full results are included in the appendix. With the ∆χ2 method, the mass measurement was

very insensitive to eigenvector variations, with the largest ratio being X̃10− = 0.40, with σχ2
00 = 3.85.

For the rapidity measurement, the values were somewhat better, with most values near 1, although

several below 0.5, with σχ2
00 = 22.42. For the φ∗ measurement with combined detector region pairs,

σχ2
00 wasn't signi�cantly larger, at 32.39, but the values of ∆χ2

i were signi�cantly smaller, with a

maximum value of X̃4+ = 0.18 and several negative values, a strong indication of statistical e�ects

dominating. For the φ∗ measurement with separated detector region pairs, σχ2
00 = 82.60. The values

of ∆χ2
i were signi�cantly larger, comparable to the mass values, with a maximum of X̃4+ = 0.40, the

same eigenvector and direction as the combined measurement. For the two dimensional φ∗ rapidity

measurement, σχ2
00 = 1067.26. The ∆χ2

i values were comparably small, with a maximum of X̃7+ = 0.08

and a couple negative values.

With the weighted average �t method, the mass measurement resulted in large �t errors, usually

on the order of 1, except for �ts against the 10th eigenvector �truth� model, which had �t errors of

approximately 0.23-0.24. For the rapidity measurement, the �t errors were typically closer to 0.25, but

many of the �ts for distinct eigenvectors were more than 1σ away from 0 or less than 1σ away from

±1. For the combined φ∗ measurement, the �t errors were larger than one for al lbut the �ts against

the 4th eigenvector, and were even as large as 2 and 4 for �ts against the 12th and 24th eigenvectors

respectively. For the separated φ∗ measurement, the �t errors were signi�cantly smaller, always less

than 0.42. However the �t values were often several σ away from 0 for distinct eigenvector �ts. For the

two dimensional φ∗ rapidity measurement, the �t errors were always less than 0.38, however many of

the �t values were several σ away from 0 for distinct eigenvector �ts.

The results of the correlation analysis are given in �gures 4-8 in the appendix. Each histogram is
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�tted with the sum of 2, 3, or 5 gaussians, depending on the distribution seen in the histogram. All of

the measurements except mass and the separated φ∗ are �t well with the sum of 3 gaussians. Mass is �t

with the sum of 2 and the separated φ∗ measurement is �t with the sum of 5. In all of the measurements

except mass and the two dimensional φ∗ v Rapidity measurement there are large peaks that are far from

zero, indicating sets of correlated eigenvectors. Although there seem to be two peaks in the mass case,

they overlap signi�cantly and the two o�-zero peaks in the two dimensional measurement are smaller

than the central peak.

6 Conclusions

Of the measurements studied, in the ∆χ2 method, only the one dimensional rapidity measurement

was able to create statistically signi�cant di�erences between the variation and the base. Low and nega-

tive values of X̃i indicate that statistical e�ects dominate the one and two dimensional φ∗ measurements.

For the weighted average model method, the results indicated an inability to delineate the e�ects of

variations in each eigenvector as every pseudodata variation resulted in signi�cant variations in the �ts

in models where other eigenvectors were being varied. This is veri�ed by the correlation analysis which

shows large o�-zero peaks in all of the measurements except mass.

7 Future Research

Obvious avenues for further research are investigating a larger set of CT10's eigenvectors, other

PDFs, and other measurement variables. Furthermore, techniques to compensate for the correlations in

the e�ects on the measured variables with variations along the eigenvectors might be investigated.
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9 Appendix: Tables of Values and Correlation Histograms

Table 1: ∆χ2
i of Mass Measurement

Index (Variation) ∆χ2
i σχ2

00 ∆χ2
i /σχ

2
00

1+ 0.6914 3.8453 0.1798
1- 0.1433 3.8453 0.0373
4+ 0.8044 3.8453 0.2092
4- 0.5773 3.8453 0.1501
7+ 1.4654 3.8453 0.3811
7- -0.1596 3.8453 -0.0415
10+ 0.2902 3.8453 0.0755
10- 1.5225 3.8453 0.3959
12+ -0.1583 3.8453 -0.0412
12- 0.9198 3.8453 0.2392
24+ -0.0406 3.8453 -0.0106
24- 0.4095 3.8453 0.1065

Table 2: ∆χ2
i of Rapidity Measurement

Index (Variation) ∆χ2
i σχ2

00 ∆χ2
i /σχ

2
00

1+ 15.2628 22.4219 0.6807
1- 19.0180 22.4219 0.8482
4+ 45.3682 22.4219 2.0234
4- 30.4534 22.4219 1.3582
7+ 38.6475 22.4219 1.7236
7- 14.5241 22.4219 0.6478
10+ 3.7307 22.4219 0.1664
10- 22.0912 22.4219 0.9853
12+ 13.6696 22.4219 0.6097
12- 29.6501 22.4219 1.3224
24+ 14.3943 22.4219 0.6420
24- 18.6846 22.4219 0.8333
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Table 3: ∆χ2
i of Combined φ

∗ Measurement
Index (Variation) ∆χ2

i σχ2
00 ∆χ2

i /σχ
2
00

1+ 1.3246 32.3911 0.0409
1- -0.3644 32.3911 -0.0113
4+ 5.7286 32.3911 0.1769
4- 1.5668 32.3911 0.0484
7+ 1.6106 32.3911 0.0497
7- -0.4361 32.3911 -0.0135
10+ -0.0014 32.3911 -0.00004
10- 0.4923 32.3911 0.0152
12+ -0.0867 32.3911 -0.0027
12- -0.1093 32.3911 -0.0034
24+ -0.3683 32.3911 -0.0114
24- -0.2034 32.3911 -0.0063

Table 4: ∆χ2
i of Separated φ

∗ Measurement
Index (Variation) ∆χ2

i σχ2
00 ∆χ2

i /σχ
2
00

1+ 16.3878 82.5998 0.1984
1- 10.9097 82.5998 0.1321
4+ 33.1705 82.5998 0.4016
4- 24.2428 82.5998 0.2935
7+ 32.8993 82.5998 0.3983
7- 6.9426 82.5998 0.0841
10+ 1.8856 82.5998 0.0228
10- 19.5482 82.5998 0.2367
12+ 4.3869 82.5998 0.0531
12- 23.4310 82.5998 0.2837
24+ 3.6117 82.5998 0.0437
24- 13.6708 82.5998 0.1655

Table 5: ∆χ2
i of φ

∗ v Rapidity Measurement
Index (Variation) ∆χ2

i σχ2
00 ∆χ2

i /σχ
2
00

1+ 50.6408 1067.2600 0.0474
1- -23.4226 1067.2600 -0.0219
4+ 37.9835 1067.2600 0.0356
4- 21.4985 1067.2600 0.0201
7+ 81.6129 1067.2600 0.0765
7- -16.9441 1067.2600 -0.0159
10+ -6.5945 1067.2600 -0.0062
10- 47.0931 1067.2600 0.0441
12+ -22.1549 1067.2600 -0.0208
12- 50.7373 1067.2600 0.0475
24+ -26.8651 1067.2600 -0.0252
24- 29.6617 1067.2600 0.0278
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Table 6: Mass Fit Values
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2

0
.5
4

0
.8
0

4
-

4
-1
.0
0

0
.8
4

4
-

1
2

-1
.2
3

0
.8
0

1
+

7
1
.1
4

0
.6
9

1
+

2
4

-1
.9
9

0
.9
9

4
+

7
-0
.5
1

0
.6
9

4
+

2
4

0
.3
4

0
.9
9

1
-

7
-0
.6
9

0
.6
7

1
-

2
4

0
.5
1

0
.9
6

4
-

7
0
.9
1

0
.6
7

4
-

2
4

-1
.7
5

0
.9
6

7
+

1
1
.7
0

0
.7
8

7
+

1
0

-0
.1
5

0
.2
5

1
0
+

1
-0
.1
5

0
.8
0

1
0
+

1
0

1
.0
9

0
.2
4

7
-

1
-0
.3
0

0
.8
1

7
-

1
0

0
.8
9

0
.2
3

1
0
-

1
1
.9
0

0
.7
8

1
0
-

1
0

-0
.9
5

0
.2
3

7
+

4
-0
.7
0

0
.8
4

7
+

1
2

-1
.8
8

0
.8
1

1
0
+

4
0
.3
7

0
.8
6

1
0
+

1
2

-0
.0
2

0
.8
2

7
-

4
0
.2
5

0
.8
6

7
-

1
2

0
.2
7

0
.8
2

1
0
-

4
-1
.1
9

0
.8
4

1
0
-

1
2

-1
.8
2

0
.8
0

7
+

7
1
.5
4

0
.6
8

7
+

2
4

-2
.5
2

0
.9
6

1
0
+

7
-0
.1
9

0
.6
9

1
0
+

2
4

-0
.1
4

0
.9
8

7
-

7
-0
.4
5

0
.6
9

7
-

2
4

0
.1
6

0
.9
8

1
0
-

7
1
.5
0

0
.6
7

1
0
-

2
4

-2
.5
9

0
.9
6

1
2
+

1
-0
.4
0

0
.8
3

1
2
+

1
0

0
.8
7

0
.1
9

2
4
+

1
-0
.4
5

0
.7
3

2
4
+

1
0

0
.9
4

0
.1
7

1
2
-

1
1
.4
8

0
.7
8

1
2
-

1
0

-0
.0
8

0
.2
8

2
4
-

1
1
.1
0

0
.8
2

2
4
-

1
0

0
.0
6

0
.2
6

1
2
+

4
0
.2
0

0
.9
0

1
2
+

1
2

0
.4
4

0
.8
2

2
4
+

4
0
.1
7

0
.8
4

2
4
+

1
2

0
.4
9

0
.7
3

1
2
-

4
-0
.7
3

0
.8
1

1
2
-

1
2

-1
.5
8

0
.8
0

2
4
-

4
-0
.5
7

0
.8
5

2
4
-

1
2

-1
.1
6

0
.8
4

1
2
+

7
-0
.6
1

0
.6
9

1
2
+

2
4

0
.3
5

0
.9
8

2
4
+

7
-0
.6
7

0
.5
9

2
4
+

2
4

0
.4
3

0
.8
6

1
2
-

7
1
.2
6

0
.6
8

1
2
-

2
4

-2
.1
5

0
.9
6

2
4
-

7
0
.8
7

0
.7
1

2
4
-

2
4

-1
.6
4

1
.0
1
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Table 7: Rapidity Fit Values
D

T
t m

in
σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

0
1

0
.0
3

0
.2
9

0
4

0
.0
0

0
.1
8

0
7

-0
.4
3

0
.2
1

0
1
0

0
.5
5

0
.3
3

0
1
2

0
.3
7

0
.1
8

0
2
4

0
.3
7

0
.2
8

1
+

1
0
.9
8

0
.2
9

1
+

1
0

-0
.6
0

0
.3
3

4
+

1
-1
.4
3

0
.3
0

4
+

1
0

2
.4
9

0
.3
4

1
-

1
-1
.0
2

0
.3
0

1
-

1
0

1
.8
1

0
.3
3

4
-

1
1
.3
4

0
.2
9

4
-

1
0

-1
.2
1

0
.3
2

1
+

4
-0
.6
0

0
.1
8

1
+

1
2

-0
.3
4

0
.1
8

4
+

4
1
.0
5

0
.1
8

4
+

1
2

1
.7
1

0
.1
8

1
-

4
0
.6
6

0
.1
8

1
-

1
2

1
.1
3

0
.1
8

4
-

4
-0
.9
5

0
.1
7

4
-

1
2

-0
.8
7

0
.1
8

1
+

7
0
.2
5

0
.2
1

1
+

2
4

-0
.4
5

0
.2
8

4
+

7
-1
.6
8

0
.2
2

4
+

2
4

1
.8
8

0
.2
9

1
-

7
-1
.1
6

0
.2
1

1
-

2
4

1
.2
5

0
.2
8

4
-

7
0
.7
3

0
.2
1

4
-

2
4

-1
.0
3

0
.2
8

7
+

1
1
.4
0

0
.2
9

7
+

1
0

-1
.3
7

0
.3
3

1
0
+

1
-0
.3
8

0
.2
9

1
0
+

1
0

1
.0
7

0
.3
3

7
-

1
-0
.6
7

0
.2
9

7
-

1
0

1
.5
3

0
.3
3

1
0
-

1
1
.1
7

0
.2
9

1
0
-

1
0

-0
.9
3

0
.3
4

7
+

4
-1
.0
6

0
.1
8

7
+

1
2

-1
.0
6

0
.1
9

1
0
+

4
0
.2
8

0
.1
7

1
0
+

1
2

0
.7
1

0
.1
8

7
-

4
0
.5
4

0
.1
8

7
-

1
2

1
.0
9

0
.1
8

1
0
-

4
-0
.8
0

0
.1
8

1
0
-

1
2

-0
.6
5

0
.2
0

7
+

7
0
.9
0

0
.2
2

7
+

2
4

-1
.2
6

0
.2
9

1
0
+

7
-0
.7
5

0
.2
1

1
0
+

2
4

0
.7
6

0
.2
8

7
-

7
-1
.1
0

0
.2
1

7
-

2
4

1
.2
0

0
.2
8

1
0
-

7
0
.5
2

0
.2
2

1
0
-

2
4

-0
.7
8

0
.3
0

1
2
+

1
-0
.6
1

0
.2
8

1
2
+

1
0

1
.4
8

0
.3
2

2
4
+

1
-0
.7
1

0
.2
7

2
4
+

1
0

1
.5
0

0
.3
0

1
2
-

1
1
.2
0

0
.3
0

1
2
-

1
0

-1
.1
2

0
.3
4

2
4
-

1
0
.9
0

0
.3
0

2
4
-

1
0

-0
.7
8

0
.3
3

1
2
+

4
0
.5
2

0
.1
7

1
2
+

1
2

1
.0
8

0
.1
7

2
4
+

4
0
.5
1

0
.1
6

2
4
+

1
2

1
.0
0

0
.1
6

1
2
-

4
-0
.9
2

0
.1
8

1
2
-

1
2

-0
.9
0

0
.1
9

2
4
-

4
-0
.7
4

0
.1
8

2
4
-

1
2

-0
.6
8

0
.1
9

1
2
+

7
-1
.0
7

0
.2
0

1
2
+

2
4

1
.1
5

0
.2
7

2
4
+

7
-1
.0
5

0
.1
9

2
4
+

2
4

1
.1
5

0
.2
5

1
2
-

7
0
.7
3

0
.2
2

1
2
-

2
4

-1
.0
3

0
.2
9

2
4
-

7
0
.5
5

0
.2
2

2
4
-

2
4

-0
.8
5

0
.2
9
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Table 8: Combined φ∗ Fit Values
D

T
t m

in
σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

0
1

0
.9
0

1
.5
0

0
4

0
.3
6

0
.5
5

0
7

0
.8
8

1
.2
5

0
1
0

0
.1
9

2
.2
0

0
1
2

1
.1
8

2
.6
4

0
2
4

-0
.2
7

4
.1
2

1
+

1
1
.8
5

1
.5
0

1
+

1
0

0
.3
0

2
.1
9

4
+

1
3
.4
9

1
.4
8

4
+

1
0

0
.4
2

2
.2
0

1
-

1
-0
.1
4

1
.5
0

1
-

1
0

0
.0
8

2
.2
0

4
-

1
-1
.8
9

1
.5
2

4
-

1
0

-0
.0
2

2
.1
9

1
+

4
0
.7
1

0
.5
5

1
+

1
2

2
.3
4

2
.6
4

4
+

4
1
.3
3

0
.5
4

4
+

1
2

4
.3
4

2
.6
2

1
-

4
-0
.0
3

0
.5
5

1
-

1
2

-0
.0
9

2
.6
5

4
-

4
-0
.6
9

0
.5
6

4
-

1
2

-2
.2
0

2
.6
6

1
+

7
1
.7
9

1
.2
5

1
+

2
4

0
.6
3

4
.1
0

4
+

7
3
.3
6

1
.2
3

4
+

2
4

2
.1
1

4
.1
3

1
-

7
-0
.1
1

1
.2
4

1
-

2
4

-1
.2
5

4
.1
4

4
-

7
-1
.8
1

1
.2
7

4
-

2
4

-2
.7
8

4
.1
1

7
+

1
1
.8
8

1
.5
1

7
+

1
0

-0
.3
7

2
.2
0

1
0
+

1
0
.9
4

1
.4
9

1
0
+

1
0

0
.7
4

2
.1
3

7
-

1
0
.0
2

1
.4
9

7
-

1
0

0
.5
1

2
.1
9

1
0
-

1
0
.8
3

1
.5
1

1
0
-

1
0

-1
.3
0

2
.3
8

7
+

4
0
.7
2

0
.5
5

7
+

1
2

2
.0
0

2
.6
7

1
0
+

4
0
.3
7

0
.5
5

1
0
+

1
2

1
.4
9

2
.6
2

7
-

4
0
.0
3

0
.5
5

7
-

1
2

0
.3
2

2
.6
3

1
0
-

4
0
.3
3

0
.5
5

1
0
-

1
2

0
.3
9

2
.7
1

7
+

7
1
.9
5

1
.2
6

7
+

2
4

-0
.4
4

4
.1
6

1
0
+

7
0
.8
3

1
.2
5

1
0
+

2
4

0
.5
4

4
.0
5

7
-

7
-0
.0
5

1
.2
4

7
-

2
4

-0
.4
5

4
.0
9

1
0
-

7
1
.0
7

1
.2
6

1
0
-

2
4

-2
.4
2

4
.3
2

1
2
+

1
0
.9
3

1
.4
9

1
2
+

1
0

0
.8
5

2
.1
6

2
4
+

1
0
.5
2

1
.5
2

2
4
+

1
0

0
.7
8

2
.2
3

1
2
-

1
-0
.0
9

1
.5
1

1
2
-

1
0

-0
.5
1

2
.2
3

2
4
-

1
0
.3
4

1
.5
0

2
4
-

1
0

-0
.2
8

2
.2
0

1
2
+

4
0
.3
7

0
.5
4

1
2
+

1
2

1
.6
0

2
.5
9

2
4
+

4
0
.2
1

0
.5
6

2
4
+

1
2

1
.0
3

2
.6
7

1
2
-

4
-0
.0
2

0
.5
5

1
2
-

1
2

-0
.3
9

2
.6
8

2
4
-

4
0
.1
5

0
.5
5

2
4
-

1
2

0
.2
6

2
.6
5

1
2
+

7
0
.7
8

1
.2
5

1
2
+

2
4

0
.8
3

3
.9
9

2
4
+

7
0
.3
9

1
.2
8

2
4
+

2
4

0
.4
3

4
.1
2

1
2
-

7
0
.0
6

1
.2
6

1
2
-

2
4

-2
.1
8

4
.2
3

2
4
-

7
0
.4
2

1
.2
5

2
4
-

2
4

-1
.4
6

4
.1
4
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Table 9: Separated φ∗ Fit Values
D

T
t m

in
σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

0
1

0
.1
8

0
.3
5

0
4

0
.0
0

0
.1
7

0
7

-0
.2
8

0
.2
9

0
1
0

0
.4
4

0
.4
0

0
1
2

0
.2
0

0
.3
2

0
2
4

0
.1
4

0
.3
5

1
+

1
1
.1
4

0
.3
4

1
+

1
0

-0
.7
2

0
.4
0

4
+

1
-1
.0
5

0
.3
5

4
+

1
0

2
.2
2

0
.4
1

1
-

1
-0
.8
6

0
.3
5

1
-

1
0

1
.7
1

0
.4
0

4
-

1
1
.2
7

0
.3
4

4
-

1
0

-1
.1
6

0
.4
0

1
+

4
-0
.5
4

0
.1
6

1
+

1
2

-0
.6
0

0
.3
2

4
+

4
1
.0
4

0
.1
7

4
+

1
2

1
.6
1

0
.3
2

1
-

4
0
.5
8

0
.1
7

1
-

1
2

1
.0
7

0
.3
2

4
-

4
-0
.9
7

0
.1
6

4
-

1
2

-1
.0
9

0
.3
2

1
+

7
0
.4
9

0
.2
9

1
+

2
4

-0
.8
1

0
.3
5

4
+

7
-1
.4
1

0
.2
9

4
+

2
4

1
.7
5

0
.3
5

1
-

7
-1
.1
1

0
.2
9

1
-

2
4

1
.1
6

0
.3
5

4
-

7
0
.7
4

0
.2
9

4
-

2
4

-1
.3
3

0
.3
5

7
+

1
1
.5
3

0
.3
4

7
+

1
0

-1
.3
9

0
.4
0

1
0
+

1
-0
.2
0

0
.3
4

1
0
+

1
0

0
.9
6

0
.4
0

7
-

1
-0
.5
2

0
.3
4

7
-

1
0

1
.3
8

0
.4
0

1
0
-

1
1
.2
7

0
.3
5

1
0
-

1
0

-1
.0
4

0
.4
2

7
+

4
-0
.9
0

0
.1
7

7
+

1
2

-1
.2
0

0
.3
2

1
0
+

4
0
.2
5

0
.1
6

1
0
+

1
2

0
.5
8

0
.3
1

7
-

4
0
.4
3

0
.1
6

7
-

1
2

0
.9
1

0
.3
2

1
0
-

4
-0
.7
4

0
.1
8

1
0
-

1
2

-0
.8
7

0
.3
4

7
+

7
1
.0
4

0
.2
9

7
+

2
4

-1
.5
7

0
.3
5

1
0
+

7
-0
.6
2

0
.2
8

1
0
+

2
4

0
.5
8

0
.3
4

7
-

7
-0
.9
6

0
.2
9

7
-

2
4

1
.0
1

0
.3
5

1
0
-

7
0
.7
0

0
.3
1

1
0
-

2
4

-1
.1
3

0
.3
7

1
2
+

1
-0
.4
3

0
.3
4

1
2
+

1
0

1
.2
8

0
.3
9

2
4
+

1
-0
.4
8

0
.3
3

2
4
+

1
0

1
.3
1

0
.3
8

1
2
-

1
1
.2
6

0
.3
5

1
2
-

1
0

-1
.1
0

0
.4
1

2
4
-

1
0
.9
6

0
.3
5

2
4
-

1
0

-0
.7
4

0
.4
1

1
2
+

4
0
.4
5

0
.1
6

1
2
+

1
2

0
.9
3

0
.3
1

2
4
+

4
0
.4
3

0
.1
4

2
4
+

1
2

0
.8
9

0
.2
9

1
2
-

4
-0
.8
6

0
.1
7

1
2
-

1
2

-1
.0
6

0
.3
3

2
4
-

4
-0
.6
5

0
.1
7

2
4
-

1
2

-0
.7
8

0
.3
2

1
2
+

7
-0
.8
7

0
.2
8

1
2
+

2
4

0
.9
6

0
.3
4

2
4
+

7
-0
.8
8

0
.2
7

2
4
+

2
4

0
.9
4

0
.3
2

1
2
-

7
0
.7
8

0
.2
9

1
2
-

2
4

-1
.3
3

0
.3
6

2
4
-

7
0
.5
8

0
.2
9

2
4
-

2
4

-1
.0
5

0
.3
5
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Table 10: φ∗ v Rapidity Fit Values
D

T
t m

in
σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

D
T

t m
in

σ
t

0
1

1
.3
2

0
.2
5

0
4

0
.0
5

0
.1
5

0
7

0
.4
7

0
.2
4

0
1
0

-0
.4
2
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