SOME THEORETICAL PHYSICS

- CAN WE FINALLY QUANTIZE NEWTON'S GRAVITY FORCE EQUATION?
 (We've only been trying for over 100 years)

- DOES NEWTON'S UNIVERSAL CONSTANT G ACCOUNT FOR MISSING DARK MATTER?

- IF SO, DOES THE MISSING DARK MATTER IN TURN ACCOUNT FOR THE RADIUS OF THE UNIVERSE?
Energy density \(\omega = \varepsilon_0/2 E^2 + \mu_0/2 H^2 \) (J m\(^{-3}\))

Momentum density \(g = S/c^2 = DxB \) (N s m\(^{-3}\))

where

\(E = \) electric field intensity \(\rightarrow D = \) electric flux density

\(H = \) magnetic field intensity \(\rightarrow B = \) magnetic flux density

\(\varepsilon_0 = \) space’s permittivity \(\mu_0 = \) space’s permeability,

and \(S \) is the Poynting vector.

\(\frac{1}{8\pi} \varepsilon_0 E \cdot W^2 \)

\(c = \left(\frac{1}{\varepsilon_0 \mu_0} \right)^{1/2} \)

\(4\pi(10^7) H \cdot W^{-1} \)

“The gravitational field transfers energy and momentum to the matter, in that it exerts forces upon it and gives it energy. If we let \(U_0 \) be the energy of the light field arriving at a unit area per second, then the momentum arriving at a unit area per second is \(U_0/c \). But the momentum is traveling at the speed \(c \), so its density in front of the absorber must be \(U_0/c^2 \).”

Momentum density \(\sigma_m = \xi/c^2 \)

Example: Earth’s embedded gravitational mass resulting from absorption of momentum density in early creation eras is \(5.98 \times 10^{24} \) kg, equivalent to earth’s inertial mass.
$F_{\text{gravity}} = \frac{Gm_1 m_2}{d^2}$,
m kg, d meters, and
$G = 6.672 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
(No correlation to electromagnetic field)

Comparing with the charge equation:

$F_{\text{charge}} = \frac{q_1 q_2}{(4\pi \varepsilon_0 d^2)}$,
q coulomb charge, d meters,
$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$
(Field permittivity of space)

Substituting ξ/c^2 for each gravitational mass:

$F_{\text{gravity}} = \frac{G\xi_1 \xi_2}{(c^4 d^2)}$.
\[\frac{1.726 \pm 0.1}{5} \rightarrow 5 \times 10^8 \text{photons m}^{-3} \]

\[G = \frac{10^8}{4\pi nc} \text{ (n photons m}^{-3}\text{),} \]
where \(nc = 1.197 \times 10^{17} \text{ photons m}^{-2} \text{ s}^{-1} \),
photon flux density of the background.

Substituting in the gravity force equation:

\[F_{\text{gravity}} = \frac{10^8 \xi_1 \xi_2}{(4\pi nc^5 d^2)}, \]

\(G \) becomes a function of the background's momentum density, and with gravitational mass \(\xi/c^2 \) also a function of this density, gravity becomes unified with the electromagnetic field.
For a spherically symmetric universe of \(\approx 10^{22} \) solar masses, total dark matter is

\[
4\pi r_o^3 \sigma / 3 \approx 9 \times 10^{21} \text{ solar masses} \\
\approx 18 \times 10^{51} \text{ kg},
\]

where one solar mass = \(2 \times 10^{30} \) kg.

Density \(\sigma \), using COBE temperature of 2.726 ± .01 K, is a weak \(\approx 4.64 \times 10^{-31} \) kg m\(^{-3} \) (the momentum density \(\xi / c^2 \) of the background radiation).

The upper limit radius of the radiation is then approximately

\[
r_o = 2 \times 10^{27} \text{ meters}.
\]
CONCLUSIONS

1. The Poynting vector product \(S = c^2DxB \) was absorbed by matter in early eras. Since it has *units* of momentum density, a 4-vector with a time component, it is ideal for describing acceleration and direction of gravity. Therefore we can confidently predict it is the *field source* of gravitational potentials in all massive bodies.

2. The *quantized* universal constant \(G \) is within 0.007% of the published value in the 1996 Handbook of Chemistry and Physics to 6 significant figures. Cannot we safely conclude then that the momentum density of free space is indeed Newton's \(G \) which was unknown at the time of his work?

3. Using \(G \) for the universe's field source of non-baryonic dark matter, totally accounts for "missing" \(9 \times 10^{21} \) solar masses (without requiring black holes).

4. This also predicts the radius of the cosmic microwave background radiation to be \(2 \times 10^{27} \) meters. This is not altered significantly when taking into consideration a relic neutrino background (if it has momentum density).

5. Cosmologically, this predicted radius may correlate with a dark matter background radiation (non-luminous) traveling at c-speed while the matter universe (optically visible) is traveling at a Hubble flow rate.

Unified field theory - TO BE CONTINUED AT DPF98

Paper 5320 6/6
F. W. Keeney