C.T. Murphy, Fermilab
E853: Results of Bent Crystal Extraction at 900 GeV in the Tevatron

Motivation: 10^7/sec extracted from SSC/LHC halo

1) Overview of crystal channeling and E853 goals

2) E853 apparatus

3) Results

4) Conclusions and future plans
E853 Collaboration

R. Carrigan, D. Chen, G. Jackson, N. Mokhov, and C. T. Murphy
Fermilab, Batavia, IL

H.-J. Shih
Superconducting Super Collider Laboratory, Dallas, TX

B. Cox, V. Golovatyuk, and A. McManus
The University of Virginia, Charlottesville, VA

A. Bogacz, D. Cline, S. Ramachandran, J. Rhoades, and J. Rosenzweig
The University of California at Los Angeles, CA

B. Newberger
The University of Texas, Austin, TX

J. A. Ellison
The University of New Mexico, Albuquerque, NM

S. Baker
Argonne National Laboratory, Argonne, IL

C. R. Sun
State University of New York, Albany, NY

W. Gabella
Vanderbilt University, Nashville, TN

E. Tsyganov
Southwestern Medical Center, University of Texas at Dallas

A. Taratin
Joint Institute for Nuclear Research, Dubna, Russia

R. Asseev and V. Biryukov,
Institute for High Energy Physics, Serpukhov, Russia

A. Khanzadeev, T. Prokofieva, V. Samsonov, and G. Solodov
Petersburg Nuclear Physics Institute, Gatchina, Russia
Goals of E853
(extraction with bent crystal already done at Dubna, Serpukov, CERN SPS)

1. Extract \(10^{-6}\) x Circulating protons/sec from the halo in a superconducting ring (e.g., if \(10^{12}\) protons circulating, extract \(10^6/sec\))

2. Show that luminosity lifetime not seriously shortened

3. Show that no intolerable backgrounds created at collider experiments

4. Explore methods of creating additional halo with RF noise
Crystal : Bent up $\uparrow 640 \mu \text{rad}$

Crystal cut along $\{111\}$ plane

Critical angle $\sim 1/\sqrt{P}$

Channeling losses $\sim P/R$

$\theta_{\text{critical}} = 8 \mu \text{radians}$

cf. beam $0 \sim 11 \mu \text{rad}$

$0.04 \text{ m crystal bend} = 8 \text{ m of kicker magnet!}$
Modes of operation

"Kick" mode - proton-only stores
- E853 sole user, ~ 2-4 hrs
- intensity ~ 10^11 circulating protons
- kick one bunch 1/2 mm closer to crystal
- establish vertical alignment of crystal angle
- study multiple-pass extraction
- study noise-induced halo

"Diffusion" mode - parasitic to end-of-store energy requirement that we be "unnoticed"
- DA protons-lost not exceed limit
- extraction rates achieved
- extraction efficiencies measured

Limitations:
- DA loss already too close to limit
- only 6 bunches:
 - 287 KHz extracted = 1 proton/bunch
 counters saturate

"Luminosity-driven diffusion"
Extraction Rates achieved

<table>
<thead>
<tr>
<th>store mode</th>
<th>circ. protons</th>
<th>extraction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton-only, 3 bunched</td>
<td>~10^n</td>
<td>60-200 kHz</td>
</tr>
<tr>
<td>6 on 6 colliding, DQ loss < limit</td>
<td>~10^{12}</td>
<td>30-150</td>
</tr>
<tr>
<td>36 on 3, DQ loss = 2 x limit</td>
<td>3 x 10^{12}</td>
<td>500-900</td>
</tr>
</tbody>
</table>

- DQ loss was 1.6 x limit before crystal went in
- Colliding proton bunches had 6 times the extraction rate of non-colliding bunches

| proton-only, 84 bunches | 1 x 10^n | 95 |
| RF damper noise on | >450 |
Efficiency Measurements

Define efficiency as:

\[
\text{efficiency} = \frac{\text{extraction rate}}{\text{increase in total proton loss rate due to crystal}}
\]

- in collider mode need to measure a small change in \(\frac{d}{dt} \) (circulating protons)
- unknown other changes in the machine can simultaneously change loss rate

CERN effy at 120 GeV

\(\sim 10\% \)

Biryukov simulation of E853

\(\sim 40\% \)
\[\text{ave} = 0.19 - 0.21 \]

Run number

Efficiency

\(\sigma \) from ave

6 on 6 bunches colliding

Proton-only stores

E853 Extraction Efficiency - Preliminary
RUN22 data

\[\text{count rate extracted per 5 sec} \]

\[\text{interaction counter rate per 5 sec} \]

\[\text{channeling effy} = \frac{U_{\text{max}} - U_{\text{min}}}{U_{\text{max}}} \]

\[\text{AG1\text{*CAL(therv)}} \]

\[\text{Crystal vertical angle theta v} \]

\[U_{\text{max}} \]

\[U_{\text{min}} \]

\[U_{2(\text{therv})} \]
Efficiency from Θ, scan and ON/OFF data

\[\text{ave} = 0.28 - 0.32 \]
Possible uses of crystal extraction:
* Active scraper
* Bunch eliminator
* 900-1000 TeV test beam at FNAL
* 10^{**7} proton/s heavy quark fixed target
* Extraction at LHC
* Extraction for long baseline neutrino beam