Status of the CESR/CLEO Phase III Upgrades

Alexander Efimov
Syracuse University, U.S.A.
for the CLEO Collaboration

- CLEO $e^+e^- \rightarrow \gamma(4S)$ experiment upgrades to do:
 - Searches for rare B meson decays
 - Accumulation of high-statistics c and τ samples.

- Brief review of CESR III accelerator upgrades.

- Upgrade to CLEO Detector, featuring good particle identification (RICH)

- Impact of CESR and Particle ID upgrades on the rest of CLEO, need for
 - New central drift chamber (DRIII)
 - New inner silicon tracking detector (SiIII)
CESR/CLEO Upgrade

- CESR upgrade
 Luminosity $3 \times 10^{32} \rightarrow 2 \times 10^{33}$

- Particle identification system upgrade
 $70\% + dE/dx$ (P < 0.7, P > 2.5 GeV)
 RICH + dE/dx ≈ 4G τ/κ (P = 2.8 GeV/c)

Physics:

$D^0 \rightarrow \pi^- e^+ \nu / D^0 \rightarrow K^- e^+ \bar{\nu}$ (V_{uc} / V_{cc})
$B \rightarrow \rho \bar{\gamma} / B \rightarrow K^* \bar{\gamma}$ (V_{td} / V_{ts})

$B^+ \rightarrow \rho^+ \bar{\gamma} / B^- \rightarrow \rho^- \bar{\gamma}$
$B^- \rightarrow D^0 K^- / B^+ \rightarrow D^0 K^+$

$\{ B^- \rightarrow J^- \pi^0 / B^+ \rightarrow J^+ \pi^0 \}$

$B^- \rightarrow K^- \pi^0 / B^+ \rightarrow K^+ \pi^0$

CP

- Track system upgrade:
 Space for CESR and RICH
 Requirement: same $\delta p/\rho$ and dE/dE resolution as CLEO II (while sacrificing 20 cm).
CESR parameters

Operating Energy: 4.7 - 5.0 GeV / Beam (5.3 GeV)

Circumference: 768.43 m, Trev = 2.56 μsec

Bunch length: 2.6 cm

Injector: 150 MeV LINAC, 4-8 GeV Synchrotron

Recent CESR Performance

Number of bunches: 18 e−, 18 e+

Peak luminosity: 3.5 × 10^{32} /cm²/sec

Best integrated luminosity: 18 /pb per day, 330 /pb per month

CESR phase II expectations

Number of bunches: 27 e−, 27 e+

Peak luminosity: 6 × 10^{32} /cm²/sec

CESR phase III expectations

Number of bunches: 45 e−, 45 e+

Peak luminosity: 2 × 10^{33} /cm²/sec
Si Detector

4 layer barrel-style device, 92% of the solid angle

double-sided detectors: z-side, ϕ-side

Table 1: Detector Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Length</td>
<td>5.110 cm</td>
</tr>
<tr>
<td>Active Width</td>
<td>2.555 cm</td>
</tr>
<tr>
<td>Number of z strips</td>
<td>511</td>
</tr>
<tr>
<td>Pitch of z strips</td>
<td>100 μm</td>
</tr>
<tr>
<td>Number of ϕ strips</td>
<td>511</td>
</tr>
<tr>
<td>Pitch of ϕ strips</td>
<td>50 μm</td>
</tr>
<tr>
<td>Readout trace resistance</td>
<td>25 ohms/cm</td>
</tr>
</tbody>
</table>

N of detectors: 447
N of channels: 135, 168

(A33C)
DRIFT Chamber

DR11 Gas: to compensate for $\frac{1}{2}$ loss in $\frac{C_p}{\rho}$
In DR11, chamber gas is $\frac{1}{2}$ of total X_0.

Ar-Ethane (50:50): $X_0 = 178m$; $N_p = 32/cm$ ← CLEO II
He-Propane (40:60): $X_0 = 392m$; $N_p = 43/cm$ ← CLEO III

DR cells: 3:1 rectangular geometry
7mm max drift dist
Outer conical section
31 layers, 8100 cells
all stereo
Drift Chamber layers
Inner tapered section
16 layers, 1696 cells
all axial wire layers
RICH detector:

- **Barrel style geometry:** 30 modules (sectors)
- **Module size:** $\sim 20 \times 250$ cm, 7620 pad channels
- **Pad size:** 8.0×7.5 mm, 72 wires/module
- **Total number of channels:** \(230,000\)
- **RICH budget:**
 - $r = 80 - 100$ cm
 - $\leq 12\% \times p_0$
"Sawtooth Radiators"

- Idea for LiF radiator geometry
- Especially useful at center of CLEO detector (total internal reflection)

\[\text{\(\Theta_e \)} \]

\[\text{\(\# \text{photoelectrons} \)} \]

\[\text{\(\cos \theta \)} \]

\[\text{\(\text{Resolution per track} \)} \]

\[\text{\(\text{False rate} \)} \]

- Gives more Čerenkov photons than leave LiF radiator
- Photons exit more at normal incidence \(\Rightarrow \) less chromatic error

- Planar LiF Radiator
- Sawtooth LiF Radiator (45° teeth)
RICII Prototype Cosmic Ray Measurements

- 80 × 15 cm² prototype
- 54 anode wires, 2000 cathode pads.
- At $U_a = +1500$ Volts, $U_w = -1300$ Volts, gain $\sim 4 \times 10^4$.
- Expansion volume is Al box flushed with N₂ (<10 ppm).
- Viking VA2 chips in readout -- noise ~ 400 e⁻
- Pedestals constant ~ 24 hrs.
- Drift chambers track cosmic ray particles ~ 1 mrad accuracy.
- Scintillators trigger on tracks in LiF radiators or chamber itself (~ 25 hr⁻¹ $P > 500$ MeV/c)

Drift Chambers

Trigger Scintillator

LiF Radiator

Expansion Volume (Nitrogen)

Cal2 Window

Photon Detector

Cosmic Ray Muons
Cherenkov angle per photoelectron

\[\Theta_e = 16.3 \, \text{(MC: 16.2 mrad)} \]

\[\Theta_e = 18.8 \, \text{(MC: 15.7 mrad)} \]
Summary

* CESR III will deliver ~10 fb⁻¹/year
 CESR II ~ 1 fb⁻¹/year
 Total integ. lum. CLEO II ~ 5 fb⁻¹
 (1990 - 1996)

* Upgrade of particle ID is crucial to many physics goals, including possible observation of CP.

* CESR and all detector systems will begin Phase III data taking in early 1998.