New Results from the DONUT Collaboration

Direct Observation of NU Tau

Emily Maher
University of Minnesota

A Progress Report – We are still working on it

Old Results

• A new upper limit for the tau-neutrino magnetic moment ($\mu_{\nu_\tau} < 3.9 \times 10^{-7}\mu B$) Phys. Lett. B 513(2001) 23-29
DONUT Collaboration

Minnesota

Fermilab
B. Baller, D. Boehnlein, W. Freeman, B. Lundberg, J. Morfin, R. Rameika

Kansas State
P. Berghaus, M. Kubanstev, N.W. Reay, R. Sidwell, N. Stanton, S. Yoshida

Pittsburgh
T. Akdogan, V. Paolone

Tufts University
T. Kafka, W. Oliver, T. Patzak, J. Schneps

South Carolina
A. Kulik, C. Rosenfeld

U. California/Davis
P. Yager

Nagoya University

Aichi Univ. of Education
K. Kodama, N. Ushida

Kobe University
S. Aoki, T. Hara

Gyeongsang University
J.S. Song, I.G. Park, S.H. Chung

Kon-kuk University
J.T. Rhee

Univ. of Athens
C. Andreopoulos, G. Tzanakos, N. Saoulidou
New Results - Preliminary

Using “Old” Found Events to Improve Analysis

- Event Selection in Spectrometer Using Neural Network Analysis
- Iterative Vertex Prediction by Spectrometer Data
- Faster Emulsion Scanning Hardware
- Improved Vertex Location Strategies in Emulsion
- Single Event Statistical Analysis

Goal – More Statistics, Understand Acceptance to get Cross-section

Currently 7 ν_e interactions and 7 ν interactions giving charm

Minnesotta
C. Erickson, K. Heller, E. Maher, R. Rusack, J. Sielaff

Fermilab
B. Baller, B. Lundberg, R. Rameika

Pittsburgh
V. Paolone

Nagoya University
H. Jikou, M. Komatsu, M. Nakamura, K. Niwa, N. Nonaka

Aichi Univ. of Education
K. Kodama

Kobe University
S. Aoki

Univ. of Athens
G. Tzanakos, N. Saoulidou
Experimental Technique

directly observe cc interactions of the ν_τ

$\nu_\tau + N \rightarrow \tau + X$

800GeV

BEAM DUMP

SHIELDING

EMULSION TARGET

SPECTROMETER

p D_s τ

ν_τ $\bar{\nu_\tau}$

$\sim 10^{17}$ protons for 400 ν interactions

$\sim 5\%$ ν_τ

c$\tau = 0.09$mm
• trigger
• muon ID
• electron ID
• momentum
• vertex location
\(\nu_\tau \) interaction selection

- No e, \(\mu \) from primary vertex
- At least one segment on parent
 - 76\% of \(\tau \)'s have visible track
- Decay with only at least one charged product
 - 86\% of decays are single charge
- Minimum transverse momentum
 \(p_t > 250 \text{ MeV/c} \)

- Short decay length
 - length < 5 mm (mean 2.3 mm)
- Small production angle
 - angle < 200 mr (mean 40 mr)

\(\nu_\tau \) acceptance = 0.5
$p = 4.6^{\pm 0.5} \text{ GeV}$

EXP.: DONUT
3039/01910
MOD.: ECC-1

Beam-view

$\theta_{\text{kin}} = 0.090 \text{ rad}$

length $280 \mu m$
All Segments in Event Vicinity

Event tracks
Through going tracks
Unmatched segments

Event 3039-01910
Located Event
Typical Event – Not Located
Probability Event is a Tau Neutrino, Charm Background, or Scatter Background

Parameters
- Track production angle
- Event angular symmetry
- Track decay length
- Daughter decay angle
- Daughter momentum

\[\nu_\tau \text{ cc} \]
\[.69 \quad .98 \quad .16 \quad .99 \]

\[\nu + \text{charm} \]
\[.31 \quad .02 \quad .14 \quad .01 \]

\[\nu + \text{hadron scatter} \]
\[0 \quad 3 \times 10^{-4} \quad .70 \quad 0 \]

Probability all events are background
\[= 4 \times 10^{-4} \text{ old} \]
\[= 7.5 \times 10^{-5} \text{ new} \]
New ν_τ Candidates

Event analysis not complete
predicted vertices from spectrometer
within fiducial volume
digitized emulsion data exists
emulsion vertex location attempted
vertex found
systematic decay search
ντ candidates

Data Set

6.6×10^6 triggers

1011 898

815 699

744 511

704

Improves vertex prediction

370

346

203

7

Improves vertex location
Conclusion

• Sampling emulsion tracker + spectrometer works even better than expected
 – Still learning to use all of its power
 • Near 100% reconstruction efficiency possible
 – (<50% was previously “excellent” ie CHORUS)
 • Single event probabilities

• Increasing event sample continues
 – From 203 to 364 since publication
 – Expect a similar increase
 • Problems are getting harder

• Better understanding of efficiencies and twice as many tau and charm events
 – Improved understanding of backgrounds and systematics
 – Cross section measurements

• Technology for future detectors to study short lived particles.